Hamiltonian Square Roots of Skew-Hamiltonian Matrices

نویسندگان

  • Heike Faßbender
  • D. Steven Mackey
  • Niloufer Mackey
  • Hongguo Xu
چکیده

We present a constructive existence proof that every real skew-Hamiltonian matrix W has a real Hamiltonian square root. The key step in this construction shows how one may bring any such W into a real quasi-Jordan canonical form via symplectic similarity. We show further that every W has infinitely many real Hamiltonian square roots, and give a lower bound on the dimension of the set of all such square roots. Some extensions to complex matrices are also presented. AMS subject classification. 15A21, 15A24, 15A57, 65F30, 93B10

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela Structure-preserving Schur Methods for Computing Square Roots of Real Skew-hamiltonian Matrices∗

The contribution in this paper is two-folded. First, a complete characterization is given of the square roots of a real nonsingular skew-Hamiltonian matrix W . Using the known fact that every real skew-Hamiltonian matrix has infinitely many real Hamiltonian square roots, such square roots are described. Second, a structure-exploiting method is proposed for computing square roots of W , skew-Ham...

متن کامل

Structure-preserving Schur methods for computing square roots of real skew-Hamiltonian matrices

The contribution in this paper is two-folded. First, a complete characterization is given of the square roots of a real nonsingular skew-Hamiltonian matrix W . Using the known fact that every real skew-Hamiltonian matrix has infinitely many real Hamiltonian square roots, such square roots are described. Second, a structure-exploiting method is proposed for computing square roots of W , skew-Ham...

متن کامل

Fortran 77 Subroutines for Computing the Eigenvalues of Hamiltonian Matrices I: the Square Reduced Method

This paper describes LAPACK-based Fortran 77 subroutines for the reduction of a Hamiltonian matrix to square-reduced form and the approximation of all its eigenvalues using the implicit version of Van Loan's method. The transformation of the Hamiltonian matrix to a square-reduced form transforms a Hamiltonian eigenvalue problem of order 2n to a Hessenberg eigenvalue problem of order n. The eige...

متن کامل

A Note on the Numerical Solution of Complex Hamiltonian and Skew-hamiltonian Eigenvalue Problems

In this paper we describe a simple observation that can be used to extend two recently proposed structure preserving methods for the eigenvalue problem for real Hamiltonian matrices to the case of complex Hamiltonian and skew-Hamiltonian matrices.

متن کامل

Ela Structured Qr Algorithms for Hamiltonian Symmetric Matrices

Efficient, backward-stable, doubly structure-preserving algorithms for the Hamiltonian symmetric and skew-symmetric eigenvalue problems are developed. Numerical experiments confirm the theoretical properties of the algorithms. Also developed are doubly structure-preserving Lanczos processes for Hamiltonian symmetric and skew-symmetric matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999